Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides.

نویسندگان

  • Steve J Gagne
  • Jake M Stout
  • Enwu Liu
  • Zakia Boubakir
  • Shawn M Clark
  • Jonathan E Page
چکیده

Δ(9)-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2-C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Class of Plant Type III Polyketide Synthase Involved in Orsellinic Acid Biosynthesis from Rhododendron dauricum

Rhododendron dauricum L. produces daurichromenic acid, the anti-HIV meroterpenoid consisting of sesquiterpene and orsellinic acid (OSA) moieties. To characterize the enzyme responsible for OSA biosynthesis, a cDNA encoding a novel polyketide synthase (PKS), orcinol synthase (ORS), was cloned from young leaves of R. dauricum. The primary structure of ORS shared relatively low identities to those...

متن کامل

Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa

RNA isolated from the glands of a Delta(9)-tetrahydrocannabinolic acid (THCA)-producing strain of Cannabis sativa was used to generate a cDNA library containing over 100 000 expressed sequence tags (ESTs). Sequencing of over 2000 clones from the library resulted in the identification of over 1000 unigenes. Candidate genes for almost every step in the biochemical pathways leading from primary me...

متن کامل

PKS activities and biosynthesis of cannabinoids and flavonoids in Cannabis sativa L. plants.

Polyketide synthase (PKS) enzymatic activities were analyzed in crude protein extracts from cannabis plant tissues. Chalcone synthase (CHS, EC 2.3.1.74), stilbene synthase (STS, EC 2.3.1.95), phlorisovalerophenone synthase (VPS, EC 2.3.1.156), isobutyrophenone synthase (BUS) and olivetol synthase activities were detected during the development and growth of glandular trichomes on bracts. Cannab...

متن کامل

Prenylation of olivetolate by a hemp transferase yields cannabigerolic acid, the precursor of tetrahydrocannabinol.

A new enzyme, geranylpyrophosphate:olivetolate geranyltransferase (GOT), the first enzyme in the biosynthesis of cannabinoids could be detected in extracts of young leaves of Cannabis sativa. The enzyme accepts geranylpyrophosphate (GPP) and to a lesser degree also nerylpyrophosphate (NPP) as a cosubstrate. It is, however, specific for olivetolic acid; its decarboxylation product olivetol is in...

متن کامل

Identification of candidate genes affecting D-tetrahydrocannabinol biosynthesis in Cannabis sativa

RNA isolated from the glands of a D-tetrahydrocannabinolic acid (THCA)-producing strain of Cannabis sativa was used to generate a cDNA library containing over 100 000 expressed sequence tags (ESTs). Sequencing of over 2000 clones from the library resulted in the identification of over 1000 unigenes. Candidate genes for almost every step in the biochemical pathways leading from primary metabolit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 31  شماره 

صفحات  -

تاریخ انتشار 2012